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This relation is plotted in Fig. 2. It is noteworthy that
with moderate mass flow ratios the total pressure of the out-
flowing secondary flow can be considerably higher than that
of the inflowing primary. This points to the possibility of
promising looped arrangements (turbocompressors, gas
generators, turbojets) in which some or all of the extracted
secondary flow is energized through heat addition to form the
primary source. '

These results are in general agreement with those obtained
by a different procedure in Ref. 2, for fully looped systems,
with consideration of compressibility effects.
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Preliminary Orbit Determination
for a Moon Satellite from Range-Rate
Data

7. E. ScawarzBEIN* AND RoBErRT H. GERsTEN'
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Derivation

EVERAL of the manned lunar missions planned for this
decade require the establishment of selenocentric orbits.
The data for determining these orbits may originate from
1) earth-based observations, 2) a base on the moon, 3) an-
other vehicle on a definitive selenocentric orbit, or 4) the or-
biting vehicle itself. Because of the large separation distances
involved, the first alternative is, at present, impractical.
Likewise, since neither a moon base nor a selenocentric satel-
lite on a definitive orbit from which observations can be made
will be established for the early missions, alternatives 2 and
3 are not considered. For these reasons, a method based
upon the fourth alternative is presented here.
Preliminary determination of the position and velocity of
a selenocentric orbiting vehicle is obtained from two measure-
ments of range-rate (vertical to the lunar surface), vehicular
sublatitude, sublongitude, and the time separation between
these measurements. The determination of sublatitude and
sublongitude points can be accomplished by recognizing lunar
landmarks and associating them with their proper selenocen-
tric coordinates and/or by use of stellar observations. The
former method is, of course, greatly dependent upon progress
in knowledge of the lunar cartography. The computations
can be performed by either an on-board or earth-based com-
puter. A mathematical model using two-body analysis
throughout is described in this paper. Like the modified
Gaussian procedure of orbit determination from two positions
and time of flight developed by Herrick and Liu,'~* this
method requires iteration upon assumed values of the param-
eter p (semilatus rectum). However, although in the for-
mer method a unique true anomaly is obtained for each as-
sumed p, in this method the value of the true anomaly is
independent of the parameter, a fact that results in a less
complex iteration procedure.
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The following inertial coordinate system is adopted. The
origin of coordinates is taken as the geometric center of the
moon with the x and y axes lying in the lunar equator plane
and the z axis directed toward the lunar north pole. The z
axis is coincident with the intersection of the lunar prime me-
ridian with the lunar equator at the time of the first observa-
tion, taken as positive toward the earth. The sense of the
y axis is such that z, y, 2 forms a right-handed set (see Fig.
1).

The unit vectors U; and U, directed from the origin to the
satellite at the observation times are given by

U; = cos¢ cosAid + cosgy sinhij + singk 1)
U, = cosgs coshe + B¢ (t, — t)]i
+ cosgs sin[hy + 6¢ (& — t)]j + singsk  (2)

where i, j, k are unit vectors in the z, y, z directions, respec-
tively, 8¢ is the rotation rate of the moon, ¢ and \ represent
the Junar sublatitude and sublongitude, respectively, ¢
is the observation time, and the subscripts 1 and 2 correspond
to the first and second observations. For this analysis the

Fig. 1 Inertial coordinate system

longitude is measured as positive in the direction of the
moon’s rotation with 0° lohgitude located along the prime
meridian.

The increment in true anomaly Av between the foremen-
tioned vectors is given by the dot product

U,-U; = cos(vs — 1) = cosAv
OS¢y oS, cosA; cos[hy + B¢ (b — t)]
4 cosgy cosee sink; sin[he + f¢ (b — £)]
+ sing, sing,  (3)

For this analysis, the assumption is made that 0 < Av < 7.
In view of the present lack of knowledge of landmarks on the
back side and limbs of the moon, this assumption is felt to
be valid. Thus Av may be assigned to the first or second
quadrant and uniquely determined from Eq. (3).

The radial velocities 7 at the observation times satisfy the
following relations:

1 = (u/p)"? e siny, (4a)
Fo = (u/p)Y? e sin(y; + Av) (4b)

where e is the orbital eccentricity, p is the parameter (semi-
latus rectum), and u is the product of the universal gravita-
tional constant and the mass of the moon or the product of
the gravitational acceleration at the moon’s surface and the
square of the (assumed constant) lunar radius. Since the
triaxiality of the moon and local anomalies are neglected in
this analysis, the measured range-rate may be set equal to
7. From Eqgs. (4a) and (4b) one can obtain, after some manip-
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ulation, the value of the true anomaly at the first observa-
tion time:

2
(2 — #1 cosAv) escAv

tany, =

&)

In assigning the proper quadrant to vy, the signs of the numera-
tor and denominator are equal, respectively, to the signs of
siny; and cosy;.  The true anomaly associated with the second
point is obtained directly from

vy = v + Av (6)

At this point it is necessary to make initial estimates of the
parameter p. For each of these estimates, the associated
orbital eccentricity is computed from

=321, w) 27) /2
°T {l‘ [712 + ( sinAv > ]} (7

which is obtained from (4a) and (4b). The time equation is
given by*

§ —esiny

ps 1/2 1
(b=t = <7> 1 —e? 11 + e cow +

2 /1 —e\t2, o
1 — eyin tan [(1 +e> tan?]}

where the subscript ¢ indicates a computed value. This
equation is valid for circular and elliptical orbits. In general,
the computed and measured flight times will not agree ini-
tially to the accuracy desired. In this case, it is necessary to
iterate on Eq. (8) to obtain a new estimate for p and return
to Eq. (7) to compute the associated orbital eccentricity.
This procedure is repeated until the computed and measured
flight times agree to the accuracy desired.

One now has sufficient information to determine the posi-
tion and velocity at the first observation time in the inertial

v2

®)

V1

coordinate system selected. This can be accomplished in .

two steps. The first step involves determination of the triad
of unit vectors Uy, V;, W, where U, is directed from the ori-
gin of coordinates to the vehicle at the first observation time,
W is normal to the orbit plane in the direction of the moment
of momentum vector, and V; lies in the orbit plane such that
U, Vi, W form a right-handed set. The unit vector orthog-
onal to the orbital plane W is given by

W = (U; X Up)/|U1 X Uy )
From W and Uy, the unit vector V; is obtained by
Vi=WXT1T, (10)

The second step consists of caleculating the separation of
the vehicle from the dynamical center 7 and the transverse
component of velocity (r6); at the time of the first observa-
tion from

r. =p/(1 + ¢ cosw) (11)
and
() = (up)*/ri (12)

Using the foregoing values, the position vector r; and veloc-
ity vector f; at the time of the first observation are given
by

=7 (13)
and
l"l = 7.'1 U1 + (rv')1 V1 (14)

The last two equations uniquely define the two-body orbit in
inertial space.
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The circular orbital case

Since it is assumed that 0 < Av < 180°, if the measured
value of #, and 7, are both equal to zero, the orbit may be as-
sumed to be circular. In this case Eqgs. (5) and (6) are re-
placed by v, = 0 and v, = As. (This assumption is valid
since the true anomaly is not defined for circular orbits.) In
addition, the iteration procedure becomes unnecessary, and p
is obtained directly by replacing Eq. (8) with

p = {[(t: — t)/Av]Pu} /3

Also, Eqs. (11) and (12) are replaced with r;, = p and (riy) =
(/).

Numerical example

In order to test the method presented in the foregoing, an
orbit having the following characteristics is considered: a =
6,842,700 ft; ¢ = 0.1; w = 30°; @ = 45°, where ¢, w, and Q
are the semimajor axis, argument of periselene, and argument
of the ascending node, respectively. 1tisfurther agssumed that
the sublatitude and sublongitude of the first observation are
¢ = 30° and A = 90° and that the separation ip true anomaly
between the two observations is Ay = 90°. The foregoing
quantities uniquely determine the second set of sublatitude
and sublongitude points and the time increment between ob-
servation as ¢, = 22.°787; N\, = 193.°734; &, — L = 32.918
min and the orbital inclination 7 as 7 = 39.°232.

The simulated ‘“measurements” of range-rate associated
with these “observations’ are 7y = 191.25 fps and 7, = 467.73
fps. This orbit exhibits the following inertial components of
position and velocity at the first observation fime:

r = 0 Xy = —49381 fpS
1 {y = 5,369,700 ft £ 4y = —1068.9 fps
2 = 3,100,200 ft 4 o= 22339 fps

The simulated values of 7y, 7o, @1, A1, ¢a, Ao, and (fz — &)
given are substituted in the derived equations. In order to
initiate the iteration precedure, the values p = 8,370,400 ft
and 6,377,800 ft were selected. Two successive applications
of Newton’s iteration procedure yielded the following initial
conditions

2 =0 @ = —4937.0 fps
sy = 5,372,300 ft I“l Z}1 = —10686 fpS
2 = 3,101,700 ft 4 = 22334 fps

Method for obtaining the second initial estimate of p and
proof of the uniqueness of the solution

Since the first value of the parameter p is completely ran-
dom, it is desirable to obtain an “educated’” second estimate of
p. In order to accomplish this, the variation of transfer time
with p for this family of orbits (ellipses having fixed values of
true anomaly and radial velocity at the observation points) is
investigated. The radial velocities at the observetion points
are given by Eqgs. (4a) and (4b). Assume a reference orbit hav-
ing the same values of true anomaly and radial velocity at the
observation points. For this latter orbit, one can write

#1 = (u/po)*/? e sinv, (15a)
o = (u/po)¥'? €o sin(vy - Av) (15b)

where the subseript 0 indicates elements of the reference orbit.
Combining Eqgs. (4a) and (15a) or (4b) and (15b) yields

e = Kl p1/2 (16)

where K; = ¢/po"/? is a positive constant. Combining Eqs.
(11) and (12) for a generalized point and integrating between
fixed values of true anomaly, one obtains

P N i S
fe tl~ﬁ1 (u) (1 + e cos)? un
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Substituting (16) into (17) gives

b—t= [ F@ o (1s)
where .
PP\ 1
F(py 1)) = < P > (1 + Kl p1/2 0080)2 (19)

In order that the transfer time given by Eq. (18) increase (or
decrease) with p, it is sufficient that F(p, v) increase (or de-
crease) monotonically with p for all values of ¢ in the interval
considered. Differentiating (19) with respect to p and re-
membering Eq. (16) yields

oF(p,v) 1 (p)m 3+ ecosw 0)
dop 2 \u (1 4+ ecosp)3
which is always positive for elliptical orbits.

Hence, it is shown that the time interval increases mono-
tonically with p. Thus, if the initial estimate for p yields a
time of flight greater (less) than the observed time increment,
the second. estimate is lowered (raised) relative to the first.
The foregoing procedure may be used to obtain values of p
vielding times of flight bounding the observed increment.
These values then may be used as initial estimates for the iter-
ation procedure. The foregoing constitutes a proof of the
uniqueness of the solution, i.e., each p is associated with one
and only one time of flight.
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Resonance Scattering Photography of
Free Molecular Flow

WALTER VALI* AND GEorRGE M. THomas'
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An experiment is described in which the free
molecular flow of sodium vapor from an orifice was
photographed, using the resonance scattering tech-
nique. The Knudsen number in the upstream
chamber based on the orifice diameter was about 40.
Photographs are presented of the flow over a cylinder
and a plate.

Introduction

HE resonance scattering technique for visualizing flow
makes 1t possible to obtain photographs at density levels
several orders of magnitude lower than with previous tech-
niques.! Application of this technique to a simple free
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molecular flow in which the properties of the flow field are
known is desirable. The effusion of gas from a container into
vacuum through an orifice is such a flow. The properties of
free jet issuing from the orifice may be calculated quite
accurately from simple kinetic theory considerations.?
Another advantage of this flow is that, simply by changing
the upstream density, the jet low may be varied from con-
tinuum to free molecule. This note describes an experiment
that was devised to illustrate the use of resonance scattering
for visualizing free molecular orifice flow.

Theory of Resonance Scattering

The present method for observing low density gas flow
(number of atoms per cubic centimeter between 107 and 101%)
is based on the knowledge that the seattering cross section of
photons close to resonance becomes very large. The intensity
of scattered radiation compared to the incident intensity is®

I/Iy = ¢(0)/R? ey

where I and I, are the scattered and incident intensities, R is
the distance to the scattering center, and ¢, for classical
elastically bound electrons, is

e? v4 sin2(9)

) = - — T AT 2
O S O @
Here ¢ is electronic charge, m electron mass, ¢ velocity of
light, » frequency of incident light, v, frequency of resonance
light, and

v = 2ep2/3mc? (3)
Thus the total classical scattering cross section can be ob-
tained by integrating Eq. (2) over a sphere:

8 et vt
3 m2c4 (VOZ — V2)2 + y272

¢total = (4)

This can be approximated for the immediate neighborhood of
resonance as

2met v?
3mPct (v — »)? + (¥¥/4)

)

¢tutal =

Quantum mechanical treatment of the scattering process
introduces only a moderate correction. Thus, it is found that
the total cross section of light exactly at resonance is

Prota1 = N/27 (6)

where A is the wavelength of the resonance light. For the
present application of sodium D lines to low density and low
temperature sodium vapor, the scattering cross section is

biom1 = (6 X 10752/6 = 6 X 10710 cm?

Therefore a density of sodium atoms of 10° em ™3 will scatter
a large fraction of the incident light. Densities of the order of
107 particles/cm?® should be observable by the resonance
scattering method.

Free Molecular Effusion

Consider the free molecular effusion of sodium atoms
through a small orifice of diameter d and negligible lip thick-
ness. The flow may be considered free molecular if the mean
free path A in the container is large compared to d. The
number of atoms per unit time escaping the orifice is therefore

N: = LCN,A )
where
C = (3KT,/m)/* = mean molecular velocity upstream
of the orifice
N, = number of atoms per unit volume in the source
T, = temperature of the source



